

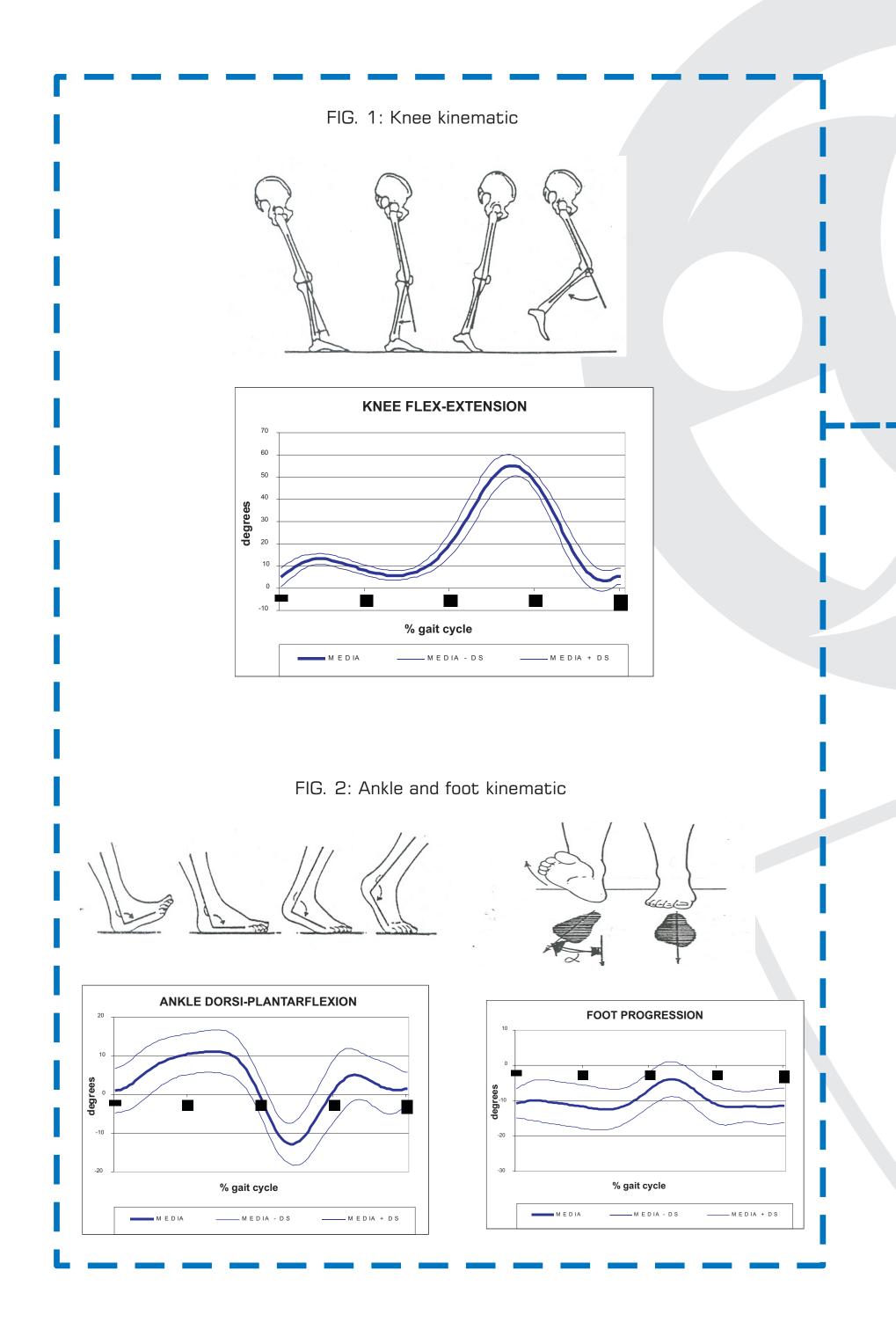
ISTITUTO SCIENTIFICO ITALIANO COLONNA VERTEBRALE ITALIAN SCIENTIFIC SPINE INSTITUTE

Quantitative analysis of the effects of obesity and low back pain on gait in female patients

¹Fabio Zaina, ²Luca Vismara, ³Veronica Cimolin, ³Marcello Crivellini, ³Manuela Galli, ²Paolo Capodaglio, ¹Stefano Negrini

¹ISICO (Italian Scientific Spine Institute), Via Roberto Bellarmino 13/1, Milan ²Orthopaedic Rehabilitation Unit and Clinical Lab for Gait Analysis and Posture, Ospedale San Giuseppe, Istituto Auxologico Italiano, IRCCS, Via Cadorna 90, I-28824, Piancavallo (VB), Italy ³Bioengineering Department, Politecnico di Milano, Italy

Introduction


Obesity is associated with various musculoskeletal disorders, including low back pain (LBP). Gait can be also affected in these subjects but no quantitative data are today available.

Aim: to quantify parameters of gait in obese LBP

2 Methods

Population: 8 LBP obese female patients, (LBP; age: 40.5+10.1 years; BMI: 42.39+5.47 Kg/m2), 10 obese

subjects.

female subjects (OBE; age: 33.6+5.2 years; BMI: 39.26+2.39 Kg/m2) and 20 healthy females (CON; age: 33.4+9.6 years; BMI: 22.8+3.2 Kg/m2). *Exclusion criteria:* secondary LBP, osteoporosis, osteoarthritis or disease precluding physical exercise. *Assessment:* 3D-Gait Analysis using an optoelectronic system with 6 cameras (VICON) and two force platforms. Spatio-temporal, kinematic and kinetic parameters were measured to compare groups. *Statistical analysis:* Kolmogorov-Smirnov test and posthoc (p< 0.05).

Results

LBP showed longer stance duration and reduced step length (63%; 0.33 m) if compared to obese subjects (62%; 0.38) and CON (59%; 0.88; p<0.05). Hip flexion were increased in LBP and OBE with respect to CON (46° and 44° vs 27; p<0.05). LBP group showed reduced knee flexion during swing phase in comparison to obese and CON (55° vs 58° and 60°, p<0.05) (FIG. 1). LBP exhibited plantarflexed position at initial contact and a limited dorsiflexion during stance and swing phase than obese subjects (FIG. 2). Both LBP and obese group revealed a limited ankle power generation at push-off if compared to CON; hip exhibited high power generation during stance in both LBP and obese subjects, but LBP subjects revealed higher hip power peak than obese group.

4 Discussion

LBP and obese showed an abnormal gait pattern, more evident in LBP that showed a less stable gait and abnormal strategy at knee and in particular at ankle joint in terms of kinematics. This may be an antalgic strategy, but it's also related to overweight.

Financial Disclosure

None of the authors has any financial conflict of interest nor received any grant for the present study.

References

Martin, K, Fontaine, KR, Nicklas, et al. Weight loss and exercise walking reduce pain and improve physical functioning in overweight post-menopausal women with knee osteoarthritis. J Clin Rheumatol 2001; 7: 219-223. Liuke M, Solovieva S, Lamminen A, et al. Disc degeneration of the lumbar spine in relation to overweight. Int J Obes (Lond) 2005; 29(8): 903-8. Janke AE, Collins A, Kozak AT. Overview of the relationship between pain and obesity: What do we know? Where do we go next? Journal of Rehabil Res and Dev 2007; 44:245–262.

Larsson UE. Influence of weight loss on pain, perceived disability functional limitations in obese women. Int J Obes Relat Metab Disord 2004; 28:269-77.

Tsuritani I, Honda R, Noborisaka Y, et al. Impact of obesity on musculoskeletal pain and difficulty of daily movements in Japanese middle-aged women. Maturitas 2002; 42(1):23-30.

Galli M, Crivellini M, Sibella F, et al. Sit-to-stand movement analysis in obese subjects. Int J Obes Relat Metab Disord 2000; 24(11):1488-92.

Messier SP, Davies AB, Moore DT, et al. Severe obesità: effects on foot mechanics during walking. Foot Ankle Int 1994; 15:29-34.

Saibene F and Minetti AE. Biomechanical and physiological aspects of legged locomotion in humans. Eur J Appl Physiol 2003; 88(4-5): 297-316. Review.

Spyropoulos P, Pisciotta JC, Pavlou KN, et al. Biomechanical Gait Analysis in obese men. Arch Phys Med Rehabil 1991; 72: 1065-1070.

Vismara L, Romei M, Galli M, et al. Clinical implications of gait analysis in the rehabilitation of adult patients with "Prader-Willi" Syndrome: a cross-sectional comparative study ("Prader-Willi" Syndrome vs matched obese patients and healthy subjects). J Neuroengineering Rehabil. 2007; 10; 4:14.

DeVita P, Hortobagyi T. Obesity is not associated with increase knee joint torque and power during level walking. J of Biomech 2003; 36: 1355-1362

Lamoth CJC, Daffertshofer A, Meijer OG, Beek PJ. How do persons with chronic low back pain speed up and slow down? Trunk-pelvis coordination and lumbar erector spinae activity during gait. Gait Posture 2006; 23: 230-239

