EUR MED PHYS 2004;40:199-209

Cochrane Review on exercise for preventing and treating osteoporosis in postmenopausal women

B. SHEA ¹, D. BONAIUTI ², R. IOVINE ³, S. NEGRINI ⁴⁵, V. ROBINSON ¹, H. C. KEMPER ¹, G. WELLS ¹, P. TUGWELL ¹, A. CRANNEY ¹

O steoporosis is a pathological condition characterized by the increased risk of fractures related to the reduction of bone density.¹ It has been better defined as a pathological condition characterized by low bone density, alterations of the microarchitecture which lead to an increase in bone fragility and therefore an increased risk of fractures.² The most common manifestations of osteoporosis are fractures of the femur, vertebrae and wrist.

According to the World Health Organisation's definition of osteoporosis, about 30% of the women in the postmenopausal period have osteoporosis.^{3, 4}

The excess mortality associated with fractures of the femur is estimated at about 20%, and the cumulative risk of fractures for a woman in her 50s can reach 60%.^{5, 6}

The value of exercise as a means of preventing the loss of bone mass has become less and less controversial. In the past 20 years numerous publications have, with varying strength, documented its usefulness. It is however necessary to define: what type of exercise is really effective, which programme, for how long, and in which manner it should be implemented.

Cochrane's revision

The aim of the revision was to determine the effectiveness of exercise on bone mass expressed in BMD in women during postmenopause. The hypothesis ¹ Institute of Population Health University of Ottawa, Ottawa, Canada ² Unit of Physical Medicine and Rebabilitation San Gerardo Hospital, Monza, Italy ³ Unit of Functional Rebabilitation, Civil Hospital Giovanni Persiceto, Bologna, Italy ⁴ ISICO (Italian Scientific Spine Institute), Milan, Italy ⁵ Unit of Functional Rebabilitation, Don Gnocchi Foundation, Milan, Italy

tested was: exercise slows down bone loss in women during menopause.

Methods

All controlled randomised studies on exercise in healthy postmenopausal women were considered. The method of randomisation had to be well defined, and studies which involved assignation, for example, according to an open list, in alteration, or based on the date of birth or number of the hospital were excluded.⁷ There were no restrictions of language.

The research was carried out on EMBASE and MED-LINE between 1st January 1966 and December 2003, using the following keywords: "Osteoporosis", "Exercise", "Bone mineral density", "Postmenopausal", and "Fractures". Being aware that electronic research carried out on MEDLINE was not sensitive enough to identify all the relevant randomised studies ⁸ the work was completed using the bibliography found in articles and on Current Contents.

The quality of the studies was evaluated giving an opinion on the following levels: the bias, the method of randomisation used, the blindness, the withdrawals and the dropouts.

Address reprint requests to: B. Shea, Institute of Population Health, University of Ottawa, 1 Stewart Street, Ottawa, Ontario, Canada, K1N 6N5. E-mail: bevshea@uottawa.ca

Study ID	Methods	Participants	Interventions	Outcomes	Notes
Bravo 1996	RCT Duration: 1 year experimental design: parallel group Blinding: assessor, single data analysis, efficacy	(>12 months) women from Cana-	 Exercise group: 1 hour long exercise classes, 3/week per 12 months. 1. warms up 2. 25 min of rapid walking: 15 min of stepping down and up or aerobic dancing, each had to progressively reach 60-70% of her heart rate reserve 3. localized exercise: 10-15 min of exercise in sitting, standing, prone position, involving the muscles of upper limbs, abdominal and the back 4. cool down period with relaxation movements stretching balancing and coordination exercises Control group: to continue their daily routing activities PLUS education 	BMD spine, BMD femur	Quality score: 2 Randomization: 2 Blinding: 0 Withdrawals and drop-outs: 0
Chow 1987	RCT Experimental design: parallel group Data analysis: efficacy	58 women from Canada	Control: continue daily routine activities, any regular fitness exercises aerobic: 3/week, 5-10 min of stretching and calistenic warm up, exercise of aerobic activities (walking, jog- ging, dance) Aerobic and strength: 3/week, 10-15 min session of low intensity strength training (isometric and isotonic contractions of limbs and truck muscles) 10 repetitions for each muscle group		Quality score: 3 Randomization: 2 Blinding: 0 Withdrawals and drop-outs: 1
Ebrahim 1997	RCT Duration: 2 years	165 women who had sustained an upper arm fracture in the past 2 years	Self-paced brisk walking or upper limb exer- cises		Quality Score: 2 Randomization: 1 Blinding: 0 Withdrawals and drop-outs: 1
Grove 1992	RCT Duration: 1 year Experimental design: parallel group Blinding: open	15 postmenopausal women	Control, non exercising low impact exercise high impact exercise	BMD Lumbar spine	Quality Score: 2 Randomization: 1 Blinding: 0 Withdrawals and drop-outs: 1
Hatori 1993	RCT Duration: 7 months experimental design: parallel group Data analysis: efficacy	women from Japan, age 46-67 years	Control: no exercise Moderate intensity: 90% of the heart rate High intensity: 110% of the heart rate Exercises: 3/week during 7 months Stretching of the legs, torso and arms, fol- lowed by 30 min of walking on flat grass- covered ground	% change in BMD Lumbar spine (DEXA)	Quality Score: 1 Randomization: 1 Blinding: 0 Withdrawals and drop-outs: 0
					(To be continued)

 TABLE I.—Included studies in systematic revision.

(Continued

Study ID	Methods	Participants	Interventions	Outcomes	Notes
Kerr 1996	RCT Experimental design: parallel group Blinding: open Data analysis: efficacy	Australia, ages 4-70,	Group 1: endurance group: 3 sets of maxi- mal load lifted 20 times for each exercise (low load and high repetition). Started with 20% rm (max lift) leg and 10% RM arm. Each session they were encouraged to attempt an additio- nal repetition. When they were able to com- plete 3 sets of 25 repetitions they attempted the next weight increment. Group 2: strength group: 3 sets of maximal load lifted 8 times for each exercise (high load and low repetiton). Started with 40% RM (max lift) arm and 60% RM leg. Exercises: 3/week. Upper limb: biceps curl, wrist curl, reverse wrist curl, triceps exten- sion with pulley, forearm pronation and supi- nation. Lower limb: leg press, hip abduc- tion/adduction, hip flexion/extension, ham- string curl. Control: control lateral limb	forearm ultradisk, radium mid radius	Randomization: 2
Lau 1992	RCT Duration: 10 months Experimental design: parallel group Data analysis: efficacy	China (Hong Kong),	Calcium supplementation of 800mg Load-bearing exercise four times a week plus a daily placebo tablet Calcium supplementation daily and load bea- ring exercise 4 times a week Placebo tablet	% change in BMD, Adverse Effects	Quality score: 3 Randomization: 2 Blinding: 0 Withdrawals and drop-outs: 1
Lord 1996	RCT Duration: 1 year Experimental design: parallel group Blinding: open data analysis: efficacy		Control group: no organized activity Exercise group: 12 months trial (1 hour exer- cise classes twice weekly for 4 10-12 week sessions). Exercise: 5 warm up period: 35 min conditioning period (aerobic exercise, activities for balance, hand-eye and foot-eye coordination and stretching exercises); stret- ching period 15 min; relaxation 15 minutes		
Martin 1993	RCT Duration: 12 months Experimental design: parallel group Blinding: open	76 women from Florida, outpatients	Controls: calcium and vit D, no exercise 45 min of exercise Exercise: 3 times a week, 1 year, start and end with 3-5 min of warm up to 60% of max heart rate. Then treadmill to 7% grade (inclination) and to 70% max heart rate in the first 2-4 weeks, and after to 85% (gradually)	· · ·	Randomization: 1
Mayoux- Benhamou 1997	RCT Duration: 1 year Experimental design: parallel group Blinding: open	51 women from France, aged 55-61, outpatient clinic	Active: IA active during 3 y; IB in the 1 st yr control and in 2 nd and 3 rd active Control: IIB in the 1 st yr active, in the 2 nd and 3 rd y control, IIA controls during the 3 y of fol- low-up Exercise: 60 daily flexions of each hip, in 2 or 3 sessions, sitting with a sand bag weighing 5 kg on the knee	TBMD lumbar spine	Quality score: 2 Randomization: 1 Blinding: 0 Withdrawals and drop-outs: 1
					(To be continued

(To be continued)

(Continued)

Study ID	Methods	Participants	Interventions	Outcomes	Notes
Nelson 1994	RCT Duration: 1 year Experimental design: parallel group Blinding: open	(5 years) Caucasian	Exercise group (n=21) 52 weeks (2 weeks off for vacation), 2 times week, 45 min sessions, 3 sets of 8 repetition: high intensity strength training (concentric and eccentric contrac- tions: hip extension, knee extension, lateral pull down, back extension, abdominal flexion using pneumatic resistance machine). Control group (n=19): they were asked to maintain their current level of physical activity during the year	femoral neck, TB	Quality score: 2 Randomization: 1 Blinding: 0 Withdrawals and drop-outs: 1
Presinger 1995	RCT Duration: 5 years Experimental design: parallel group Blinding: open data analysis: efficacy	Austria, outpatient clinic aged 45-75	Exercise group: warm ups, stretching exerci- ses and resisted and complex exercises each performed for at least 20 min. Regular exercise: at least 3 times a week for 20 min or longer stopped exercise treatment, performed it regu- larly or less than 1 h per week Control group: without therapy		Quality score: 1 Randomization: 1 Blinding: 0 Withdrawals and drop-outs: 0
Prince 1991		122 women from Australia	Control Exercise alone: 1 weekly exercise class (low impact aerobic exercise for 1 hour, 30% of the time devoted to arm exercises) supervised by a trained physiotherapist and 2 brisk 30 min walks per week Exercise plus calcium Exercise plus hormone therapy	BMD, vertebral	Quality score: 4 Randomization: 2 Blinding: 2 Withdrawals and drop-outs: 0
Prince 1995	RCT Experimental design: parallel group Blinding: double, patient, pnvestigator Data analysis: efficacy	168 women from Australia	Placebo tablets Tablets containing 1g calcium lactate-gluco- nate Exercise group took calcium and were asked to exercise for 4 h/week. Two hours in super- vised exercise classes (weight bearing) and 2 hours of walking at a rate that would increa- se heart rate to 60% of the peak heart rate of their age Milk powder containing 1 g calcium	ultraradius,	quality score: 4 Randomizatio n: 2 Blinding: 2 Withdrawals and drop-outs: 0
Pruitt 1996	RCT Duration: 1 year Experimental design: parallel group Blinding: open Data analysis: efficacy	40 Caucasian wo- men, aged 65-79	Control group: continue their customary activities High intensity resistance training (HI): they performed 1 set of 14 repetitions at 40% 1 repetition max (IRM) as a warm up, followed by 2 sets of 7 repetitions at 80% IRM Low intensity training (LI) they performed 3 sets of 14 repetitions at 40% IRM Exercises: both group performed 10 exerci- ses for 1 hour (with Nautilus and Universal gym equivalent), 3 days/week under super- vision for 1 year	femoral neck, drop-	Randomization: 1

(To be continued)

(Continued)

Study ID	Methods	Participants	Interventions	Outcomes	Notes
Revel 1993	RCT Duration: 1 year Experimental design: parallel group	78 women from France	Psoas group: strengthening exercise for both Psoas muscles: 60 flex with 5 kg on the knees, 2-3/day for 1 year Deltoid group: strengthening exercise for both deltoid muscles: 60 adb with 1 kg in each hand, 2-3/day for 1 year Subgroup "assiduously" psoas: women who performed the exercises assiduously Subgroup "assiduously" deltoid: women who performed the exercise assiduously	TBMD	Quality score: 2 Randomization: 1 Blinding: 0 Withdrawals and drop-outs: 1
Sinaki 1989	RCT Duration: 2 years Experimental Design: Parallel Group Blinding: Data Analysis: Intention-to-treat	•	Exercise group: back extensions in prone posi- tion with a back pack that contains weights equivalent to 30% of the max isometric back muscle strength in pound, 10 times, once a day, 5 days a week Control: nothing	BMD lumbar spine	Quality score: 2 Randomization: 1 Blinding: 0 Withdrawals and drop-outs: 1
Smidt 1992	RCT Duration: 1 year Experimental design: parallel group Blinding: single, assessor Data analysis: Intention-to-treat	menopausal wo-	Exercise group: 3 sets of 10 repetitions for each of 3 exercises: sit up, double leg raise, prone trunk extension (90 repetitions); 3-4 times/week over a period of 12 months. Each month 2-5% increase in exercise resistance. Target exercise intensity level was 70% of the maximal strength test measures. Control: to maintain the current lifestyle		Quality score: 2 Randomization: 1 Blinding: 0 Withdrawals and drop-outs: 1

As stated in the objectives of the revision, the effect of exercise on bone was valued with the variation of bone density measured with single-photon (SPA), dual-photon absorptiometry (DPA), dual X-ray absorptiometry (DXA) at the beginning of the study and at yearly intervals.

All the results were converted into the percentage of bone loss per year and the difference between the percentage lost in the group with exercises and the percentage lost in the control group in this metaanalysis was considered as the measure of effect.

Each effect of the treatment was weighed with respect to the variations: in such a procedure the greatest weight was attributed to the most reliable results, that is, to the studies with the highest number of samples.

For each study a check was carried out on — other than the BMD variation — the accuracy of the mea-

suring system of bone density, besides the adherence, that is, the percentage of the participants who completed the programme, and the attendance, that is, the average attendance per session during the period of the study (percentage of attendance of the sessions).

The data was extracted also evaluating the allocation of the subjects, the use of blindness, the percentage of those lost during the follow-up, the type of participants and the type of intervention. The methodological quality was also evaluated on this basis and gave the measure of risk of the existence of bias in assessing the results of the effects of treatment.

Statistical analysis

We estimated that the importance of the effect of treatment highlighted with a given number of participants should have been able to define the level of sig-

TABLE II.—Accuracy in BMD measure in included studies.

Bravo	DEXA	Not available
Chow	Non riportato	_
Ebrahim	DPX	Not available
Grove	DPA	3%
Hatori	DEXA	0.4%
Lau	DX-ray densitometry	Not available
Lord	DEXA	0.8 spine, 1.8 neck of thigh bone,
		1.6% trochanter
Martin	Single photon	2%
Nelson	DPX	Spine 1.0%, neck of thigh bone
		2.1%, total body 0.6%
Preisinger	Single photon	2%
Price 1991	Forearm densitometer	1.3-1.5%
Prince 1995	DEXA	1%
Pruitt	DXA	1.5%
Revel	TC	2-5%
Sinaki	DPA	1.7%
Smidt	DPA	0.9%

nificance with α =0.05 and with 80% of strength (β =0.2).

Description of the results

Ninety trials were considered and examined by 2 revisers (BS, DB), who, in an independent way, selected the studies to be included in the meta-analysis and evaluated the methodological quality. In this manner 17 studies which met the criteria for inclusion were included.⁹⁻²⁵

There was 100% agreement between the revisers on the choices of studies to be included.

For all of the studies the methodological quality was evaluated on the basis of the description of the modality of randomisation, of the drop out and of blinding (Table I).

The accuracy of the measuring system of bone density used varied from between 0.4% to 3% (Table II), the attendance (the average attendance per session during the period of training) from 56% to 100%, and the adherence (the percentage of the participants who completed the study) from 65% to 82% (Table III).

The accuracy of the measuring systems is obviously of fundamental importance like bias in the evaluation of the δ in the samples and in the controls. In the same manner, the registered compliance, if <70%, notably reduces the value of the results obtained in the studies.

The extreme lack of homogeneity in the physical exercise programmes which the women underwent

	Length	No. of patients	Attendance	Adherence
Bravo	12 mo	52	73%	_
Chow	2 y	16	83%	70%
Grove	12 mo	5	Low impact 80% SD 6.6	•
			High impact 82.6% SD 4.1	
Ebrahim	2 y	49	_	_
Hatori	7 mo	12	_	_
Kerr	12 mo	25	87% (75% sessions)	82%
Lau	10 mo	11	_	_
Lord	12 mo	58	72.9%	79.4%
				(>50 sessions)
Martin	12 mo	16	85.2% SD 12.7,	55 out of 76
			(1-6 mo)	
			82.4% SD 15.8,	
			(6-12 mo)	
Nelson	12 mo	20	100% (twice a week	ζ.
			for 50 weeks)	
Preisinger	3 y SD 1.3	39	48%	—
Prince a 1991	2 y	41	56% (at least 10 sess out of 12 weeks)	sions
Prince b 1995	2 y	42	39%	
Pruitt	12 mo	8	78.6%	65%
Revel	12 mo	23	55% (at least 5 days	
			for a week)	
Sinaki	2 y	34	_	
Smidt	12 mo	27	_	_

TABLE III.—"Attendance" and "adherence" in included studies.

was dealt with by subdividing the types of training into 3 big categories: those which represented mainly aerobic exercises (calistenics, fitness and muscular strengthening, exercises with elastics or with weights, and a little walking), muscular strengthening with machines, and walking at different speeds. The checks were always represented by the absence of the same exercise.

For each group a homogeneity test was carried out without any significant results.

The 1st group ("aerobics") represents the most numerous ⁹⁻¹⁸ with the highest number of samples (266 subjects who underwent treatment and 295 in checks). For this type of exercise, for which there nevertheless exists an extreme heterogeneity of programs, the intensity of the load and the force is described in only one study,¹¹ and showed a efficacy at the level of the vertebral lumbar, not in the hip (Figure 1).

The 2nd group (resistance) is represented by 3 studies,^{14, 19, 20} with a total of 53 subjects who underwent treatment and 55 checks (Figure 2). One study ¹⁹ presents the use of only one side, in a cross-shaped man-

	D Spine		Carrysolak		WIND	Strangert	WIND .
off p :	11	(townships)	11	(menory and)	(999LC) Firms)	16	(School) Firently
Ermon 1986	82	(2.256.2.46)	-	1.2004.000		31.0	1040306404
Chow 1987	1.100	0.07(2.11)	10	-0.012.04)		20.0	01000-8.40.8.040
Crown 1998	6	1.7122.731		-6.084.80		2.4	110002-04,12.003
Law Years		-1.0008.005	10	-32.040x/7.040x		1.3	0.002-0.00.7.101
Land 1996	08	1.01(2.08)	199	0.36(3.91)		46.2	0.710-0.308.8.812
111-288-104040-		0.74ch (90)		0.0005.48		1.0	0.746-4.705.0.140
10-148C 10087		-1.79(4.24)	32	2.3064.003		40.8	0.00(4.75,0.87)
acathaca) agusta 9.80 (at-8).P. D.		8.81	144		-	-00.0	1.0480.688.1.046
Comparison: 10 A		ercise vs co		nenopausal wor	- WINDS	100 6 6 (2019)	ANNE -
lines.		Aprentian (and)		(TELEVISION (TALE)	(PATIENT Fishers)	10	Departy Manel
Presenger 1985	30	+0.3001.200	84 47	+1.70(1.60) -0.7003.805		05.4 19.6	1 40(0.46, 1.99)
1100 000			100			122.5	
564(09%0) 26 equire 2.87 (49+1) P	80 0.09 7-1 80	-ciocont	109		•	108.0	1.240.23,1.241
				12	ander Possible		
Comparison: 10 A			fordin	seropausat wor			
na na ser anna an taoinn an tao Iomraetha	- Tradition	internet arts	-2 0,000,000	And Address of the Owner of the	(MADE Field)	- Walgri	ISSNED HEALT
Drave 100f	82	0.27(4.48)		-0.53(6.67)	-		0.003-0.04,2.54)
	11		12	-8 104 K2 700			-0.510-10.04.4.020
The state of the s	-	1.00215.1081		3 (206.62)		21.0	1.602-0.100.0.001
0.000 19802		-0.49(3.00)		0.79(3.72)		2.4	11200-5-43.2.871
Lane 1960		1-040(x 340)	- 27	-0.25(#.5+)			1.311-1-16,3.761
						1000 ct.	3.008-2.08.2.031
Larg 1000			474		-	4000.00	

Figure 1.--Effectiveness of exercise in studies with aerobic exercises.

ner, as a check. Eliminating in this way the bias derived from the genetic condition and the environment, but on the other hand modifying the complete efficacy of the training programme.

These types of exercises showed a significant effect of the strain on the bone in the vertebral lumbar, and on the hip in the limits of (p=0.04). The measurements of the 2 levels concern only 2 studies at a time, further reducing the number of samples.

The 3rd group (walking) concerns only 3 studies,²¹⁻²³ consisting of 77 subjects who underwent treatment and 79 checks (Figure 3). In only one of the studies is the strain of the exercise calculate:²² this however extends itself to a somewhat short follow-up period (7 months) and does not describe the level of compliance. The significance of the efficacy was shown only at the level of the backbone, the measurement on

the hip was carried out in only one study with success but only on 49 subjects and 48 checks.

From these groups we excluded the studies on programs of specific side exercises: Sinaki,²⁴ who studied the effect of the extension exercises on spine; Revel who studied the effect of the one side hip flexion exercises.²⁵

Discussion

The results of this revision leads to conclusions with extreme caution, given the low points in the quality score of the selected studies, the brevity of the follow-up, given also the low numbers of samples and excessive use, in the same studies, of mixed treatment (medicine and exercise). Moreover, the description of the exercise programmes being generally insuf-

EXERCISE FOR PREVENTING AND TREATING OSTEOPOROSIS IN POSTMENOPAUSAL WOMEN

54.041	tind -	Inchasting and	Contract	And Add In Concession of Concession, Name	WAR - WAR	(b) = +11(1)	
10073		(interroter)		NACOLUMNIC .	solution in the second second		のために非常性的なな
Adaptacian 1985-8	20	1.00(3.00)	.10	-1.40(2.50)		85.6	2.80(0.57,5.03)
Prute 1996	r.	0 74(5.90)		0.00(5.48)		38.4	0.74(-4.70.0.10)
sta(95%C) 7-aquare (1.47 ((8-1) P S	27 ++ Z=2 36 +		30			100 0	4 57[0 44 4 57]
				1	en men serviceses	r k	
teview: Exercis Comparison: 09 Exe				nopausal wom	en		
AND THE REAL PROPERTY AND THE REAL	BICLER VE	raus Control	Creme to D				
	ne minera	I density (Hi	(qi			1000 (1000 (100	Constant.
butcome: 02 Bor		I density (Hi			WMD thirts C # Leniste	Weight	white defined in the con-
Nutcome: 02 Bor	ne minera Treature H	al density (Hi interpolence) 0.00(3.10)	rancteor r	Para (1050)		67.4	-0-40-1.94.1.14]
Nutcome: 02 Bor nutry Ken 1898 Netson 1894	Trauture I	6.00(3.13) 0.90(4.90)	ri n m m m	100000 F1(5)(5) 8.40(2.40) -2.00(3.00)		67.4 23.4	-0.40(-1.94, 1.14) 3.40(-1.94, 1.14)
Netcome: 02 Bor Net 1996 Netsus 1994 Prue 1996	ne minera 1 reset the 11 25 20 8	al density (Hi interpolence) 0.00(3.10)	10) 10 and 100 11 10 11	Para (1050)		67.4 23.4 23.2	-0.40(-1.04, 1.14) 3.40(0.70, 0.01) -1.39(-0.40, 2.87)
Nutcome: 02 Bor Nutrity Network 1898 Prue 1898 Prue 1898	1 rest the 1 25 20 8 30	density (Hi 	ri n m m m	100000 F1(5)(5) 8.40(2.40) -2.00(3.00)		67.4 23.4	-0.40(-1.04, 1.14) 3.40(0.70, 0.01)
Nutcome: 02 Bor Nutrity Network 1898 Prue 1898 Prue 1898	1 rest the 1 25 20 8 30	density (Hi 	10) 10 and 100 11 10 11	199,752,11(9)(3) 8,40(2,40) -2,00(3,00) 8,79(3,772)		67.4 23.4 23.2	040-04714
Nutcome: 02 Bor Net 1898 Netson 1894 Prue 1898	1 rest the 1 25 20 8 30	density (Hi 	10) 10 and 100 11 10 11	1999a (1995) 8.40(2.40) -2.00(2.40) 8.70(3.72)		67.4 23.4 12 100.0	-0.40(-1.04,1.14) 3.40(0.79,6.01) -1.39(-0.462,87)
Netcome: 02 Bor Netcone: 1000 Netcone 1004 Prue 1006	1 rest the 1 25 20 8 30	density (Hi 	10) 10 and 100 11 10 11	1999a (1995) 8.40(2.40) -2.00(2.40) 8.70(3.72)		67.4 23.4 12 100.0	-0.40(-1.04,1.14) 3.40(0.79,6.01) -1.39(-0.462,87)
Dutcome: 02 Bor Part 1998 Networ 1998 Proce 1998 Proce 1998 Proce 1998	ne minera Traditi e 11 20 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	al density (H ((((((((((((((1) Cardfrod 11 25 25 25	1999a (1995) 8.40(2.40) -2.00(2.40) 8.70(3.72)		67.4 23.4 12 100.0	040-04714
Netcome: 02 Bor richy See 1000 Networ 1004 Prove 1	ne minera Traditi - 35 20 8 95 05 2-0-65 r 55 56 for ost	d density (H (((((((((((((ip) Caritroi 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 Tec (100 C) 8 40(2 40) -2 00(3 00) 8 79(3 72) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		67.4 23.4 12 100.0	040-04714
Netcome: 02 Bor Tictly Networ 1000 Networ 1004 Prote 1004 Pro	ne minera Traditite 28 20 8 30 20 8 30 20 8 30 20 8 30 20 8 30 30 30 30 30 30 30 30 30 30 30 30 30	e os	ip) Caritroi 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 Tec (100 C) 8 40(2 40) -2 00(3 00) 8 79(3 72) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		67.4 23.4 12 100.0	040-04714
Netcome: 02 Bor Tictly Networ 1000 Networ 1004 Prote 1004 Pro	ne minera Traditi 1 25 20 8 95 95 95 95 95 95 95 95 95 95 95 95 95	density (Hi contact at) 0.00(3.10) 0.30(4.50) 0.49(5.00) r 0.5	ic Section 35 10 10 10 10 10 10 10 10 10 10	100 Tec (100 C) 8 40(2 40) -2 00(3 00) 8 79(3 72) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		47.4 23.4 113 100.0	.0.40(-1.84,1.14) 3.40(0.785,01) -1.38(-0.452,87) 1.67(-0.85,1.67)
Netcome: 02 Bor Turly Ken 1000 Netsus 1004 Prue 1998 Daget Sch (at-2) P. 0 Review: Exercis Comparison: 09 Ex Dutcome: 03 BM	ne minera Traditi - 35 20 8 95 95 20 8 95 95 95 95 95 95 95 95 95 95 95 95 95	e os	ip) Sector 35 W 15 55	1907-0-11(5/5) 3-0(2-00) -2-0(3-00) 8-79(3-72) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	CHARGE F Locale	47.4 23.4 113 100.0	-040(-154.1.14) 340(0.75.6.01) -139(-646.2.87) 1 67(-036.1.67)

Figure 2.—Effectiveness of exercise in studies with exercises against resistance.

	ID Spine	16	Carac	£.)	1200		6349	
Stody	-	3494(31)	4	meanipall	(RENCEPTION)	3	(35%C) (\$104)	
Eprature 1987	45	1.10(5.10)	42	170(5-40)	-	40.5	0.00(-2.00,2.00)	
Hatert 1903	12	1 10 5 100	12	-1.70(2.40)		344	24(1):52,50(1)	
Varies 1963	10	0.01(4.53)	4	0.60(3.45)	-++	24.5	144-1284.11	
(Resci)	11					100 J	249(0.382.99)	
Arequere 3 15 (ch-2) P (121 2-132	P 0 05						

EUROPA MEDICOPHYSICA

ficient, it is difficult to establish the "posology" of the treatment in the study, and the results of the same exercises are often not sufficiently highlighted because the measurement of bone density is not carried out in effective specific load site.

Nevertheless it is possible to reach some conclusions: knowing that, after the period of rapid loss in the first few years of postmenopause, the rate of loss returns to 1% per year, we can affirm that at this level physical exercise may be a prevention, while not compensating for the loss in the first phase of rapid bone loss. Also with all the limits due to methodology problems, this meta-analysis confirms that which has emerged in recent revisions,^{26, 27} or rather that the efficacy of exercise exists, but it is relatively small, and obviously, connected to its continuation in the life women.

This is the actual challenge: in the first place to have the elements to establish a program which is really effective and to be able to implement it, with a satisfying level of compliance in such a manner as to keep the results for life.

At the present time both exercise programmes above the stimulus threshold, site specific with individually defined loads, limited in time but repeated every 5 to 10 years, and long term programmes with greater compliance, as could be the case of speed walking, of which its efficacy has been proven, seem proposable.

However, beyond these simplifications, it is necessary to remember that exercises have a wider action than what is measurable at the level of the variation in bone density, or rather they work by improving muscle mass, strength, balance and co-ordination. Therefore, unlike treatment with medicine, exercises work simultaneously on various factors,²⁶ which really allow for a prevention of falls and therefore of fractures.

References

- Consensus Development Conference. Prophylaxis and treatment of osteoporosis. Osteoporos Int 1991;1:114-7.
- Consensus Development Conference. Diagnosis, prophylaxis and treatment of osteoporosis. Am J Med 1993;94:646-50.
- Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 1994;4:368-81.
- WHO Report of a WHO Study Group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organ Tech Rep Ser 1994;843:1-129.

- 5. Cooper C. The epidemiology of fragility fractures: is there a role for bone quality? The epidemiology of fragility fractures: is there a role for bone quality? The epidemiology of fragility fractures: is there a role for bone quality? The epidemiology of fragility fractures: is there a role for bone quality? Calcif Tissue Int 1993;53 Suppl 1:S23-6.
- Cummings SR, Black DM, Rubin SM. Lifetime risks of hip, Colles', or vertebral fracture and coronary heart disease among white postmenopausal women. Arch Intern Med 1989;149:2445-8.
- Schulz KF, Chalmers I, Hayes RJ, Altman D. Empirical evidence of bias: dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA 1995;273: 408-12.
- Dickersin K, Scherer R, Lefebvre C. Identifying relevant studies for systematic reviews. BMJ 1994;309:1286-91.
- Bravo G, Gauthier P, Roy PM, Payette H, Gaulin P, Peloquin L et al. Impact of a 12 month exercise on the physical and psychological health of osteopenic women. J Am Geriatr Soc 1996;44:756-62.
- Chow R, Harrison JE, Notarius C. Effect of two randomised exercise programmes on bone mass of health postmenopausal women. BMJ 1997;295:1441-4.
- Grove KA, Londeree BR. Bone density in postmenopausal women: high impact vs low impact exercise. Med Sci Sports Exerc 1992;24:1190-4.
- Lau EMC, Woo J, Leung PC, Swaminathan R, Leung D. The effects of calcium supplementation and exercise on bone density in elderly Chinese women. Osteoporos Int 1992;2:168-73.
- Lord SR, Ward JA, Williams P, Zivanovic E. The effects of a community exercise program on fracture risk factors in older women. Osteoporos Int 1996;6:361-7.
- Pruitt LA, Taaffe DR, Marcus R. Effects of a one year high-intensity *versus* low-intensity resistance training program on bone mineral density in older women. J Bone Miner Res 1995;10:1788-95.
- Smidt GL, Lin SY, O'Dwyer KD, Blanpied PR. The effect of highintensity trunk exercise on bone mineral density of postmenopausal women. Spine 1992;17:280-5.
- Preisinger E, Alacamlioglu Y, Pils K, Saradeth T, Schneider B. Therapeutic exercise in the prevention of bone loss. Am J Med Rehabil 1995;74:120-3.
- 17. Prince RL, Smith M, Dick IM, Price RI, Webb PG, Henderson NK *et al.* Prevention of postmenopausal osteoporosis: a comparative study of exercise, calcium supplementation and hormone replacement therapy. N Engl J Med 1991;325:1189-95.
- Prince R, Devine A, Dick I, Criddle A, Kerr D, Kent N *et al.* The effects of calcium supplementation (milk powder or tablets) and exercise on bone density in postmenopausal women. J Bone Min Res 1995;10:1068-75.
- Kerr D, Morton A, Dick I, Prince R. Exercise effects on bone mass in postmenopausal women are site specific and load-dependent. J Bone Miner Res 1996;11:218-25.
- Nelson ME, Fiatarone MA, Morganti CM, Trice I, Greenberg RA, Evans WJ. Effects of high intensity strength training on multiple risk factors for osteoporotic fractures. JAMA 1994;272:1909-14.
- Ebrahim S, Thompson PW, Baskaran V, Evans K. Randomized placebo-controlled trial of brisk walking in the prevention of postmenopausal osteoporosis. Age Ageing 1997;26:253-60.
 Hatori M, Hasegawa A, Adachi H, Shinozaki A, Hayashi R, Okano
- Hatori M, Hasegawa A, Adachi H, Shinozaki A, Hayashi R, Okano H *et al.* The effect of walking at the anaerobic thresold level on vertebral bone loss in postmenopausal women. Calcif Tissue Int 1994;52:411-4.
- Martin D, Notelovitz M. Effects of aerobic training on bone mineral density of postmenopausal women. J Bone Miner Res 1993;8:931-6.
- Sinaki M, Wahner HW, Offord KP, Hodgson SF. Efficacy of non loading exercises in prevention of bone vertebral loss in postmenopasusal women: a controlled trial. Mayo Clin Proc 1989; 64:762-9.

- 25. Revel M, Mayoux-Benhamou MA, Rabourdin JP, Bagheri F, Roux C. One-year psoas training can prevent lumbar bone loss in post-menopausal women: a randomized copntrolled trial. Calcif Tissue Int 1993;53:307-11
- 26. Berard A, Bravo G, Gauthier P. Meta-analysis of the effectiveness of physical activity for the prevention of bone loss in post-menopausal women. Osteoporos Int 1997;7:331-7.
- 27. Wolff I, van Croonenborg JJ, Kemper HC, Kostense PJ, Twisk JW. The effect of exercise training programs on bone mass: a metaanalysis of published controlled trials in pre- and postmenopausal women. Osteoporos Int 1999;9:1-12.

Published data only

Bravo 1996 {published data only}

Bravo G, Gauthier P, Roy PM, Payette H, Gaulin P, Harvey M et al. Impact of a 12-month exercise program on the physical and psychological health of osteopenic women. J Am Geriatr Soc 1996;44:756-62

Chow 1987 {published data only}

Chow R, Harrison JE, Notarius C. Effect of two randomised exercise programmes on bone mass of health postmenopausal women. BMJ 1987;295:1441-4.

Ebrahim 1997 {published data only}

- Ebrahim S, Thompson PW, Baskaran V, Evans K. Randomized placebo-controlled trial of brisk walking in the prevention of postmenopausal osteoporosis. Age Ageing 1997;26:253-60. Grove 1992 {published data only}
- Grove KA, Londeree BR. Bone density in postmenopausal women: high impact vs low impact exercise. Med Sci Sports Exerc 1992;24: 1190-4
- Hatori 1993 {published data only}
- Hatori M, Hasegawa A, Adachi H, Shinozaki A, Hayashi R, Okano H et al. The effects of walking at the anaerobic threshold level on vertebral bone loss in postmenopausal women. Calcif Tissue Int 1993;52:411-4.
- Kerr 1996 {published data only}
- Kerr D, Morton A, Dick I, Prince R. Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Res 1996;11:218-25.
- Lau 1992 {published data only}
- Lau EMC, Woo J, Leung PC, Swaminathan R, Leung D. The effects of calcium supplementation and exercise on bone density in elderly Chinese women. Osteoporos Int 1992;2:168-73.
- Lord 1996 {published data only}
- Lord SR, Ward JA, Williams P, Zivanovic E. The effects of a community exercise program on fracture risk factors in older women. Osteoporos Int 1996;6:361-
- Martin 1993 (published data only)
- Martin D, Notelovitz M. Effects of aerobic training on bone mineral density of postmenopausal women. J Bone Miner Res 1993;8:931-6. Mayoux-Benhamou 1997 (published data only)
- Mayoux-Benhamou MA, Bagheri F, Roux C, Auleley GR, Rabourdin JP, Revel M. Effect of psoas training on postmenopausal lumbar bone loss: a 3-year follow-up study. Calcif Tissue Int 1997;60:348-
- 53 Nelson 1994 {published data only}
- Nelson ME, Fiatarone MA, Morganti CM, Trice I, Greenberg RA, Evans WJ. Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures. JAMA 1994;272:1909-14.

Preisinger 1995 {published data only}

- Preisinger E, Alacamlioglu Y, Pils K, Saradeth T, Schneider B. Therapeutic exercise in the prevention of bone loss. Am J Phys Med Rehabil 1995;74:120-3
- Prince 1991 {published data only}

Prince RL, Smith M, Dick IM, Price RI, Webb PG, Henderson NK et al. Prevention of postmenopausal osteoporosis: a comparative study of exercise, calcium supplementation, and hormone-replacement therapy. N Engl J Med 1991;325:1189-95. Prince 1995 {published data only}

Prince R, Devine A, Dick I, Criddle A, Kerr D, Kent N et al. The effects of calcium supplementation (milk powder or tablets) and exercise on bone density in postmenopausal women. J Bone Miner Res 1995;10:1068-7

Pruitt 1996 {published data only}

Pruitt LA, Taaffe, Marcus R. Effects of a one-year high-intensity versus low-intensity resistance training program on bone mineral density in older women. J Bone Miner Res 1996;10:1788-95.

Revel 1993 {published data only}

- Revel M, Mayoux-Benhamou MA, Rabourdin JP, Bagheri f, Roux C. One-year psoas training can prevent lumbar bone loss in postmenopausal women: a randomized controlled trial. Calcif Tissue Int 1993;53:307-11.
- Sinaki 1989 {published data only}
- Sinaki M, Wahner HW, Offord KP, Hodgson SF. Efficacy of nonloading exercises in prevention of vertebral bone loss in postmenopausal women: a controll trial. Mayo Clin Proc 1989;64: 762-9
- Smidt 1992 {published data only}
- Smidt GL, Lin SY, O'Dwyer KD, Blanpied PR. The effect of high-intensity trunk exercise on bone mineral density of postmenopausal women. Spine 1992;17:280-5.

References to studies excluded from this review

Heinonen 1996

Heinonen A, Kannus P, Sievanen H, Oja P, Pasanen M, Rinne M et al. Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. Lancet 1996;348:1343-7.

Kohrt 1995

Kohrt WM, Snead DB, Slatopolsky E, Birge S. Additive effects of weightbearing exercise and estrogen on bone mineral density in older women. J Bone Miner Res 1995;10:1303-11.

- Kriska 1986
- Kriska AM, Bayles C, Cauley JA, Laporte RE, Sandler RB, Pambianco G. A randomized exercise trial in older women: increased activity over two years and the factors associated with compliance. Med Sci Sports Exerc 1986;18:557-62.

Leichter 1989

Leichter I, Simkin A, Margulies JY, Bivas A, Steinberg R, Giladi M et al. Gain in mass density of bone following strenuous physical activity. J Orthop Res 1989;7:86-90.

Lohman 1995

Lohman T, Going S, Pamenter R, Hall M, Boyden T, Houtkooper L et *al.* Effects of resistance training on regional and total bone mineral density in premenopausal women: a randomized prospective study. J Bone Miner Res 1995;10:1015-24.

Mayoux-Benhamou 1995

Mayoux-Benhamou MA, Rabourdin JP, Bagheri F, Roux C, Revel M. Effet de l'exercice physique sur la densité osseuse lombaire chez la femme ménopausée. Ann Readaptation Med Phys 1995;38:117-24

Nelson 1991

Nelson ME, Fisher EC, Dilmanian FA, Dallal GE, Evans WJ. A 1-year walking program and increased dietary calcium in postmenopausal women: effects on bone. Am J Clin Nutr 1991;53:1304-11. Notelovitz 1991

Notelovitz M, Martin D, Tesar R, Khan FY, Probart C, Fields C et al.

Estrogen therapy and variable-resistance weight training increase bone mineral in surgically menopausal women. J Bone Miner Res 1991;6:583-4.

Pruitt 1992 Pruitt LA, Jackson RD, Bartels RL, Lehnhard HL. Weight-training effects on bone mineral density in early postmenopausal women. J Bone Miner Res 1992;7:179-85.

Rikli 1990

Rikli RE, McManis BG. Effects of exercise on bone mineral content in postmenopausal women. Res Q Exerc Sport 1990;61:243-9.

White 1984

White MK, Martin RB, Yeater RA, Butcher RL, Radin EL. The effects of exercise on the bones of postmenopausal women. Int Orthop 1984;7:209-14.

Additional references

Berard 1997

Berard A, Bravo G, Gauthier P. Meta-analysis of the effectiveness of physical activity for the prevention of bone loss in postmenopausal women. Osteoporos Int 1997;7:331-7.

Chamberlain 1982

- Chamberlain MA, Care G, Harfield B. Physiotherapy in osteoarthritis of the knees. A controlled trial of hospital *versus* home exercises. Int Rehabil Med 1982;4:101-6.
- Kovar PA, Allegrante JP, Mackenzie CR, Peterson MG, Gutin B, Charlson ME. Supervised fitness walking in patients with osteoarthritis of the knee. Ann Intern Med 1992;116:529-34.

Kreindler 1989

Kreindler H. Effects of three exercise protocols on strength of persons with osteoarthritis of the knee. Top Geriatr Rehabil 1989;4: 32-9.

Lankhosrt 1982

Lankhorst GJ, van de Stadt RJ, van der Korst JK, Hinlopen-Bonrath E, Griffione FM, de Boer W. Relationship of isometric knee extension torque and functional variables in osteoarthritis of the knee. Scand J Rehabil Med 1982;14:7-10.

Minor 1989

Minor MA, Hewett JE, Webel RR, Anderson SK, Kay DR. Efficacy of physical conditioning exercise in patients with rheumatoid arthritis and osteoarthritis. Arthritis Rheum 1989;32:1396-405. Peterson 1993

Peterson MG, Kovar-Toledano PA, Otis JC, Allegrante JP, Mackenzie CR, Gutin B *et al.* Effect of walking program on gait characteristics in patients with osteoarthritis. Arthritis Care Res 1993;6:11-6.